Hierarchical Modeling of the Mechanical Behavior of High Speed Steels as Layer-Structured Particulate MMCs
نویسندگان
چکیده
High Speed Steels (HSS) produced by electro-slag remelting call be viewed as particle reinforced Metal Matrix Composites (MMCs) consisting of alternating layers of high and low inch]sion volume fraction. These phase arrangements require specific models to bc used in analytical and numerical studies of the elastoplast,ic response of HSS. In the present study, a hierarchical micro-mesomacro approach is discussed, which combines the Multi-Particle Effective Field Method (MEFM) for describing the mat,rix-inclusion topology at the microscale with an extended lamination theory for handling the layered geometry at the mesoscale. In addition, a Finite Element based two-dimensional method is presented, in which HSS is modeled as a material with a graded microstructure. The obt,dned results are discilssed in t,erms of ovcrall elastoplastic behavior and of damage relevant microscale fields.
منابع مشابه
Low-speed impact behavior of two-layer similar and dissimilar metal laminate structures
Mechanical behavior of two-layer metal laminate structures under low-speed impact loading was investigated experimentally and numerically. The experimental results were just used for validation of numerical results. Then numerical modeling was used to study the behavior of metal laminates in details. The mechanical behavior of the metal laminate structures under impact loading was found to be d...
متن کاملPrediction of Mechanical Properties of TWIP Steels using Artificial Neural Network Modeling
In recent years, great attention has been paid to the development of high manganese austenitic TWIP steels exhibiting high tensile strength and exceptional total elongation. Due to low stacking fault energy (SFE), cross slip becomes more difficult in these steels and mechanical twinning is then the favored deformation mode besides dislocation gliding. Chemical composition along with processing ...
متن کاملInfluence of High Strain Rates on the Mechanical Behavior of High-Manganese Steels
In this work, dynamic mechanical properties of three high-manganese steels with TRIP/TWIP or fully TWIP characteristics are studied. High strain rate experiments in the range of true strain rates between ~500 and 1800 /s are conducted using a dynamic torsional testing setup. All the three steels show a positive strain rate sensitivity in the intermediate range of strain rates (up to 500 /s). Bu...
متن کاملThe Effects of Inhomogeneous Mechanical Properties of the Ferrite Phase on Dual Phase Steel’s Behavior
The microstructure of dual phase steels can be considered as a matrix of ferrite phase reinforced by martensite particles. Recent measurements show that the mechanical properties of the ferrite phase are changed with the distance from the martensite grains. In this paper, a new method has been proposed to consider this phenomenon in finite element modeling of dual phase steels microstructure. I...
متن کاملMechanical Behavior of TWIP Steel in High Strain Rate Torsional Test
Advanced high strength steels (AHSS) have recently attracted great attention because of their superior mechanical properties. A modern group of these steels, known as twinning induced plasticity (TWIP) steels, shows a unique combination of strength and ductility even at high rates of strain. In order to examine the functionality of such steels in dynamic loading conditions, their mechanical beh...
متن کامل